АС и АВ - касательные к окружности с центром Q. Следовательно АК - биссектриса угла А и по свойству биссектрисы делит катет ВС в отношении, равном отношению двух прилежащих сторон АС и и АВ. То есть СК/КВ=АС/АВ. АВ найдем по Пифагору: АВ=√(АС²+ВС²)=√(144+25)=13. КВ=СВ-СК=5-СК. Тогда 13СК=(5-СК)*12=60-12СК, отсюда СК=2,4. Проведем из центра первой окружности прямую, параллельную катету АС до пересечения с радиусом QН второй окружности, проведенным в точку касания с катетом АС (QH перпендикулярен АС по свойству радиуса в точку касания). Тогда из прямоугольного треугольника ОРQ имеем: ОQ=R+r=R+0,5; QP=R-0,5; PO=√(OQ²-QP²)=√[(R+0,5)²-(R-0,5)²). Отсюда РО=√(2R). НС=РО=√(2R). Тогда из подобия треугольников НАQ и АСК (НQ параллелна СК, так как перпендикулярна АС) имеем: НQ/CK=AH/AC. HQ=R; HC=√(2R); CK=2,4; AH=12-HC=12-√(2R). Тогда R/2,4=(12-√(2R))/12, отсюда 12*R=2,4*((12-√(2R)) или 6*2R=12*2,4-2,4*√(2R). Примем √(2R)=Y. Тогда 2R=Y² и мы имеем квадратное уравнение: 6Y²+2,4Y-12*2,4=0. Разделим на 6: Y²+0,4Y-4,8=0, отсюда (отбрасывая отрицательный корень) Y=2. Итак, √(2R)=2, отсюда R=2. Следовательно, радиус второй окружности МЕНЬШЕ (1/5)*АС=12/5=2,4. Что и требовалось доказать.
Точку A соединяем с точкой C, т.к. они лежат в одной плоскости.
Через точки A и B, лежащие в одной плоскости проводим прямую до пересечения со стороной DK или DN.
1. Предположим, что прямая AB пересекла сторону DK в точке E. Тогда просто соединяем точки E и C и получаем в сечении треугольник AEC.
2. Предположим, что прямая AB пересекла сторону DN в точке E. Тогда продолжим отрезок AC до пересечения с прямой MN (если они не параллельны) в точке H (см. рис 2 и 3). Точку H соединяем с точкой E, получая пересечение с ребром DM в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.
Если AC || MN, то через точку E в плоскости MDN проводим прямую параллельную MN до пересечения с ребром MD в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.
отношении, равном отношению двух прилежащих сторон АС и и АВ.
То есть СК/КВ=АС/АВ. АВ найдем по Пифагору:
АВ=√(АС²+ВС²)=√(144+25)=13. КВ=СВ-СК=5-СК. Тогда
13СК=(5-СК)*12=60-12СК, отсюда СК=2,4.
Проведем из центра первой окружности прямую, параллельную катету АС до пересечения с радиусом QН второй окружности, проведенным в точку касания с катетом АС (QH перпендикулярен АС по свойству радиуса в точку касания). Тогда из прямоугольного треугольника ОРQ имеем:
ОQ=R+r=R+0,5; QP=R-0,5; PO=√(OQ²-QP²)=√[(R+0,5)²-(R-0,5)²).
Отсюда РО=√(2R). НС=РО=√(2R). Тогда из подобия треугольников НАQ и АСК (НQ параллелна СК, так как перпендикулярна АС) имеем:
НQ/CK=AH/AC. HQ=R; HC=√(2R); CK=2,4; AH=12-HC=12-√(2R). Тогда
R/2,4=(12-√(2R))/12, отсюда 12*R=2,4*((12-√(2R)) или 6*2R=12*2,4-2,4*√(2R).
Примем √(2R)=Y. Тогда 2R=Y² и мы имеем квадратное уравнение:
6Y²+2,4Y-12*2,4=0. Разделим на 6:
Y²+0,4Y-4,8=0, отсюда (отбрасывая отрицательный корень) Y=2.
Итак, √(2R)=2, отсюда R=2.
Следовательно, радиус второй окружности МЕНЬШЕ (1/5)*АС=12/5=2,4.
Что и требовалось доказать.
Точку A соединяем с точкой C, т.к. они лежат в одной плоскости.
Через точки A и B, лежащие в одной плоскости проводим прямую до пересечения со стороной DK или DN.
1. Предположим, что прямая AB пересекла сторону DK в точке E. Тогда просто соединяем точки E и C и получаем в сечении треугольник AEC.
2. Предположим, что прямая AB пересекла сторону DN в точке E. Тогда продолжим отрезок AC до пересечения с прямой MN (если они не параллельны) в точке H (см. рис 2 и 3). Точку H соединяем с точкой E, получая пересечение с ребром DM в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.
Если AC || MN, то через точку E в плоскости MDN проводим прямую параллельную MN до пересечения с ребром MD в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.