п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
В задании, надо догадываться, требуется найти объём второй пирамиды.
Находим площадь основания АВС по формуле:
So = absin C = 12*18*sin 60° = 216*(√3/2) = 108√3 кв. ед.
Высота ho из точки А на ВС равна:
ho = 2So/BC = 2*108√3/12 = 18√3.
Так как сечение параллельно SA, то оно вертикально, поэтому высота второй пирамиды равна половине ho, то есть hп = 9√3.
Площадь сечения (а это прямоугольник со сторонами как средними линиями четырёх граней первой пирамиды) находим так:
Sп = (8√3/2)*(12/2) = 24√3 кв. ед.
Получаем ответ: Vп = (1/3)Sп*hп = (1/2)*24√3*9√3 = 216 куб. ед.