Дан треугольник ABC, на стороне AC которого взята точка D такая, что AD=7 см, а DC=9 см. Отрезок DB делит треугольник ABC на два треугольника. При этом площадь треугольника ABC составляет 112 см2. Найди площадь меньшего из образовавшихся треугольников, ответ дай в квадратных сантиметрах.
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
Точка Е - середина КР⇒ КЕ=РЕ.
МЕ входит в периметры как ∆ МКЕ, так и ∆ МЕР, 13 см, поэтому на самом деле 13 см - это разность между (МК+КЕ) и (МР+РЕ).
Вариант а) МР< МК+КЕ
Пусть КЕ=ЕР=а. Тогда МК=2а
(2а+а)-(22+а)=13⇒ 2а-22=13⇒2а=35 см
МР=МК=35 см
---------
Вариант б) МР+ЕР > МК+ЕК
22+а-3а=13⇒2а=9 см
2а=9. В этом варианте не соблюдается неравенство треугольника, где наибольшая сторона треугольника не может быть больше суммы двух других сторон или быть равна ей.
Следовательно, боковые стороны этого треугольника равны 35 см