Дан треугольник ABC. От луча BC отложите угол, равный углу BAK, смежному с углом A треугольника ABC. Заполните пропуски в записи построения.
1. Окружность с A и произвольным радиусом R.
2. Окружность пересекает луч AK в точке P, а луч AB — в точке M.
3. Окружность с центром B и R.
4. Окружность пересекает луч BC в точке E.
5. Окружность с центром в точке E, радиусом .
6. Окружности с центром в точке B и центром в точке E пересекаются в двух точках. Обозначим одну из них точкой H.
7. Проведём BH.
8. Угол искомый.
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
Плоскости α и β пересекаются по прямой с,которой принадлежат точки А1 и В1 (концы проекций).
АА1=5см,ВВ1=8см,А1В1=24см,АВ=25см
АВ1=√(А1В1²+АА1²)=√(576+25)=√601
АВ=√(АВ²-АА1²)=√(625-25)=√600
Угол между плоскостями равен линейному углу АВ1В
cosAB1B=(BB1²+AB1²-AB²)/(2BB1*AB1)=(64+601-625)/(2*8*√601)=0
<AB1B=90гр
ответ угол между плоскостями равен 90градусов
2
Плоскости α и β пересекаются по прямой с. AC_|_c,AC=16см,AB_|_BC,AB=8см
Угол между плоскостями равен линейному углу АСВ.
Треугольник АВС прямоугольный,угол В равен 90 гр.Гипотенуза равна 16см,а катет ,лежащий напротив угла АСВ равен 8см.Следовательно угол АСВ равен 30гр
ответ угол между плокостями равен 30градусов