Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
А) Окружность, вписанная в ∆ABC, будет являться описанной для ∆MPK. У равностороннего треугольника радиус описанной окружности равен R = a√3/3, а радиус вписанной - r = a√3/6. Тогда R/r = 2. Значит, радиусы описанных окружностей около ∆ABC и ∆MPK будут относиться как 2:1.
б) ∆MPK - это треугольник, образованный средними линиями => его периметр будет равен половине периметра ∆ABC. Кроме этого, ∆ABC~∆MPK и отсюда следует, что SABC/SMPK = k² = (1/2)² = 1/4. Радиус вписанной окружности находится по формуле: r = 2S/P, где S - площадь треугольника, P - периметр треугольника. Пусть r1 - радиус вписанной окружности в ∆ABC, r2 - в ∆MPK, S - площадь ∆MPK r1 = 2•4S/2•3a = 8S/6a = 4S/3a r2 = 2S/3a = 2S/3a r1/r2 = 2/1 = 2:1. ответ: а) 2:1; б) 2:1.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
У равностороннего треугольника радиус описанной окружности равен R = a√3/3, а радиус вписанной - r = a√3/6. Тогда R/r = 2. Значит, радиусы описанных окружностей около ∆ABC и ∆MPK будут относиться как 2:1.
б) ∆MPK - это треугольник, образованный средними линиями => его периметр будет равен половине периметра ∆ABC. Кроме этого, ∆ABC~∆MPK и отсюда следует, что SABC/SMPK = k² = (1/2)² = 1/4.
Радиус вписанной окружности находится по формуле:
r = 2S/P, где S - площадь треугольника, P - периметр треугольника.
Пусть r1 - радиус вписанной окружности в ∆ABC, r2 - в ∆MPK, S - площадь ∆MPK
r1 = 2•4S/2•3a = 8S/6a = 4S/3a
r2 = 2S/3a = 2S/3a
r1/r2 = 2/1 = 2:1.
ответ: а) 2:1; б) 2:1.