Дан треугольник АВС со сторонами АВ = 3 см, Вс = 2 см, СА = 4 см. Найдите отрезки, на которые биссектриса СD делит сторону AB. Сделайте чертеж и запишите решение.
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
1) из того, что вд - медиана, - равенство площадей треугольников авд и свд.
2) из равенства площадей - равенство сторон ав и вс.
3) из равенства сторон - вд - не только медиана треугольника авс, но и биссектриса (угол авд = углу свд) и высота (вд перпендикулярна ас).
4) из перпендикулярности вд к ас треугольник авд - прямоугольный.
5) из отношения 1: 2 катета вд к гипотенузе ав - угол а=30 градусов.
6) из суммы углов треугольника = 180 градусов - угол авд = 60 градусов.
7) из 3) угол свд = 60 градусов.
8) найти угол fвс.
9) сравнить угол fвс с углом свд.
10) сделать вывод.
успеха!
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400