АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Смотри:
(x-a)²+(y-b)²=R, где a и b - это центр,т.е. точка А (к примеру) находится в центре и имеет координаты (а;b). R-это радиус.
То что я написала выше -это формула окружности.
Теперь давай решать.
1) (x-7)²+(y+2)²=25
В данном случае a(из формулы) -это 7, b (из формулы) - это -2.
-2 потому что в формуле b должно принимать отрицательное значение,а в этом уравнении оно положительно. Поэтому + умножить на - дает плюс.
ответ : центр: (7;-2) , радиус 5 см .
2)(x-4)²+y²= 1
Координата y равна 0.
ответ : центр : (4;0) ,радиус 1 см.
Если будут вопросы,обращайтесь.Удачи!
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.