Дан треугольник MKP. Плоскость параллельная прямой МК пересекает МР в точке М1, РК – в точке К1. М1К1 = 18 см, МР : М1Р =12 : 72. Тогда длина отрезка МК равна…
1) проитв большей стороны лежит больший угол, и наоборот
против меньшей стороны лежит меньший угол.
2) <1=75; <2=60; <3=180-(75+60)=45 =>
против ∠45°-лежит меньшая , против ∠75° -большая стороны Δ.
3) если Δ равнобедренный и прямоугольный, то угол при его вершине =90°, , два других угла по 45, ⇒ гипотенуза-основание лежащая против большего угла будет больше боковых сторон-катетов .
4) теорема: внешний угол Δ равен сумме двух других углов Δ, не смежных с ним.
рассуждаем два внешних угла равны ⇒ внутренние углы раны,
третий внешний угол вершине С в два раза меньше его внутреннего угла.( 180=х+2х) т.е. ∠С=120 ⇒ против ∠C и будет лежать большая сторона.
5) условия существования Δ : третья сторона должна быть меньше суммы двух других сторон, ⇒ в Δ основание =8, боковая сторона = 16
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.
Объяснение:
1) проитв большей стороны лежит больший угол, и наоборот
против меньшей стороны лежит меньший угол.
2) <1=75; <2=60; <3=180-(75+60)=45 =>
против ∠45°-лежит меньшая , против ∠75° -большая стороны Δ.
3) если Δ равнобедренный и прямоугольный, то угол при его вершине =90°, , два других угла по 45, ⇒ гипотенуза-основание лежащая против большего угла будет больше боковых сторон-катетов .
4) теорема: внешний угол Δ равен сумме двух других углов Δ, не смежных с ним.
рассуждаем два внешних угла равны ⇒ внутренние углы раны,
третий внешний угол вершине С в два раза меньше его внутреннего угла.( 180=х+2х) т.е. ∠С=120 ⇒ против ∠C и будет лежать большая сторона.
5) условия существования Δ : третья сторона должна быть меньше суммы двух других сторон, ⇒ в Δ основание =8, боковая сторона = 16
РΔ = 16+16+8=40
6) СДЕЛАЙ САМОСТОЯТЕЛЬНО
Объяснение:
1)Рассмотрим △АВС.
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.