В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
Объяснение:
ВН – высота, проведённая к стороне АD, по условию, тогда угол ВНА=90°.
Так как ∆АНВ по условию, равнобедренный, то найдем угол ВАН.
Углы при основании в равнобедренном треугольнике равны, тогда:
Угол ВАН = (180°– угол ВНА)÷2=(180°–90°)÷2=45°.
В параллелограмме, углы при одной его стороне в сумме дают 180°, тогда:
Угол АВС=180°– угол ВАD= 180°–45°=135°
Противоположные углы в параллелограмме равны, тогда:
Угол BCD= угол BAD=45°
Угол ADC= угол АВС=135°
ответ: Угол BCD=45°; угол BAD=45°; угол ADC=135°; угол АВС=135°
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
Объяснение:
ВН – высота, проведённая к стороне АD, по условию, тогда угол ВНА=90°.
Так как ∆АНВ по условию, равнобедренный, то найдем угол ВАН.
Углы при основании в равнобедренном треугольнике равны, тогда:
Угол ВАН = (180°– угол ВНА)÷2=(180°–90°)÷2=45°.
В параллелограмме, углы при одной его стороне в сумме дают 180°, тогда:
Угол АВС=180°– угол ВАD= 180°–45°=135°
Противоположные углы в параллелограмме равны, тогда:
Угол BCD= угол BAD=45°
Угол ADC= угол АВС=135°
ответ: Угол BCD=45°; угол BAD=45°; угол ADC=135°; угол АВС=135°