В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
нррроь
нррроь
02.06.2021 19:29 •  Геометрия

Дан выпуклый четырёхугольник abmc,в котором ab=bc угол bam равен 30 градусам,угол acm равен 150 градусам. докажите,что am - биссектриса угла bmc.

Показать ответ
Ответ:
NastjaKucera13
NastjaKucera13
10.10.2020 05:20

Проведём от точки А отрезок AD, таким образом, чтобы угол BAD был равен 60° и АВ был равен AD. Получаем равносторонний треугольник АВD.

Обозначим угол AMD как x, тогда угол МАС=180-150-х=30-х.

угол ВАС=BCA=30+30-х=60-х

угол АВС=180-2*(60-х)=60+2х

угол СВD=60+2x-60=2x

угол BCD=BDC=(180-2x)/2=90-x

Угол АСD=90-x-(60-x)=30°

угол DCM=150+30=180°

Т.к. угол DCM - развернутый, то будем рассматривать четырехугольник АВМD, а именно треугольники АВМ и АDM. Они равны, т.к. угол BAM=DAM, AB=AD и сторона АМ - общая. Следовательно угол BMA=DBA.

Это значит, что АМ - биссектриса угла BMD.


Дан выпуклый четырёхугольник abmc,в котором ab=bc угол bam равен 30 градусам,угол acm равен 150 град
Дан выпуклый четырёхугольник abmc,в котором ab=bc угол bam равен 30 градусам,угол acm равен 150 град
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота