В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Nastiy1987
Nastiy1987
30.03.2021 07:44 •  Геометрия

Дана окружность (O;OC). Из точки M, которая находится вне окружности, проведена секущая MB и касательная MC.
OD — перпендикуляр, проведённый из центра окружности к секущей MB и равный 6 см.
Найди радиус окружности, если известно, что MB равен 25 см и MC равен 15 см.

Показать ответ
Ответ:
LilllOOo
LilllOOo
12.01.2022 02:33

Cosα = 2/9,  α ≈ 77,1°

Объяснение:

В правильном тетраэдре все ребра равны, а грани - правильные треугольники.

Центры граней - точки пересечения медиан (высот, биссектрис).

Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,

<YpAH = 60°.  Тогда

А(0;0;0).  

Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.

М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).

P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.

N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.  

Примем а=1. Тогда

Вектор PQ{0;-√3/6; -(√(2/3)/2}.  |PQ| = √(0+3/36+1/6) = 1/4.

Вектор MN{5/12;5√3/36; -(√(2/3)/6}.  

|MN| = √(25/144+75/1296+1/54) = 324/1296 = 1/4.

Cosα = |(Xpq*Xmn+Ypq*Ymn+Zpq*Zmn)/(|PQ|*|MN|) или

Cosα = |(0-5/72+1/18)/((1/4)*1/4)| = |(-1/72)/(1/16)| =  2/9.

α ≈ 77,1°


Решить координатным методом: в правильном тетраэдре abcd точки м и р - середины ребер ad и cd соотве
0,0(0 оценок)
Ответ:
nmh788
nmh788
20.06.2021 14:46
Диагональ трапеции делит ее на два треугольника. Отрезки средней линии трапеции являются средними линиями треугольников (см. рисунок)
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15

Площадь трапеции равна произведению полусуммы оснований на высоту:   S = (a+b)h/2
Отсюда высота трапеции:  h = 2S/(a+b) = 2 x 72 / (15+3) = 8

Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка:  6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10

Диагональ равнобедренной трапеции делит среднюю линию на отрезки с длинами 1,5 и 7,5, а площадь ее р
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота