Дана окружность с центром в точке О. На окружности взяты точки N, P, Q так, что угол РОQ в 2 раза меньше угла PON и в 6 раз меньше угла QON. Найдите градусную меру дуги PQ, которая не содержит точку N. ответ дайте в градусах
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому
h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пияагора найдем катеты:
1)
9²+12²=225
√225=15
2)
16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х. Тогда его проекция - 9см:
1) Находим площадь ромба АВСД: S=d1*d2/2=10*24/2=120(см кв)
2)Находим АВ-сторону ромба.Для этого рассмотрим прямоугольный треугольник АОВ(О-точка пересечения диагоналей). АО=10:2=5(см), ВО=24:2=12(см).
По теореме Пифагора АВ=sqrt{5^2+12^2}=sqrt{169}=13(см)
3)Находим расстояние от точки О-точки пересечения диагоналей ромба до стороны ромба АВ. Оно равно высоте OH треугольника АОВ.
Площадь треугольника АОВ равна 1/4 площади ромба, т.е. 120:4=30(см кв).
S(AOB)=AB*OH/2
13*OH/2=30
13*OH=60
OH=60/13
OH=4 8/13 (см)
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому
h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пияагора найдем катеты:
1)
9²+12²=225
√225=15
2)
16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х. Тогда его проекция - 9см:
х²= 9·25=225
х=15 см
Больший катет пусть будет у:
у²=25·16=400
у=20 см