Дана окружность с центром в точке O. радиус окружности равен 4, отрезок AOB диаметр окружности. на окружности лежит точка K, так что угол KOB равен 60 Чему равна длинна окружности? Чему равна длинна меньшей дуги BK? Чему равна длинна меньшей дуги AK?
В окружности проведены две пересекающиеся хорды AB=7, CD=5. Точка их пересечения делит CD в отношении 2:3. В каком отношении эта точка делит хорду AB? (В ответе укажите отношение меньшего отрезка к большему).
РЕШЕНИЕ: Пусть О - точка пересечения хорд. Тогда, CO/DO=2/3=2x/3x.
Дано АВСД - параллелограмм
АВ=СД ВС=АД (противоположные стороны равны)
АВIIСД ВСII АД (противоположные стороны параллельны)
АК-биссектриса угол ВАК=уголКАД (делит угол пополам)
ВК=4см КС=3см ВС=ВК+КС
Найти АВ СД ВС АД
Решение
Биссектриса угла А образует треугольник АВК углы КАД и ВКА - накрест лежащие углы при параллельных прямых. А так как ВАК=КАД, то и
уголВАК=уголВКА (можно просто запомнить, что биссектриса угла параллелограмма отсекает равнобедренный треугольник) .
Углы при основании равны треугольник равнобедренный.
В треугольнике АВК АВ=ВК=4см
АВ=СД=4 см ВС=4+3=7 ВС=АД=7
ответ АВ=СД=4 ВС=АД=7
18_03_09_Задание № 6:
В окружности проведены две пересекающиеся хорды AB=7, CD=5. Точка их пересечения делит CD в отношении 2:3. В каком отношении эта точка делит хорду AB? (В ответе укажите отношение меньшего отрезка к большему).
РЕШЕНИЕ: Пусть О - точка пересечения хорд. Тогда, CO/DO=2/3=2x/3x.
Выразим CD: СD=CO+DO=2x+3x=5x=5, значит х=1. CO=2, DO=3
По теореме о пересекающихся хордах: АO*BO=CO*DO=2*3=6
С другой стороны АО+ВО=АВ=7. Выразим АО=7-ВО и подставим в теорему:
(7-ВО)*BO=6
BO^2-7BO+6=0
(BO-1)(BO-6)=0
ВО=1, тогда АО=6
или ВО=6, тогда АО=1
В любом случае отношение меньшей части к большей равно 1:6.
ОТВЕТ: 1:6