Дана правильная четырехугольная пирамида ЕАВСD. Точка К – пересечение диагоналей основания. Указать взаимное расположение: а) прямых СD и АЕ; б) прямых ЕD и DС; в) прямых АD и ВС; г) прямых КЕ и АD;
а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3.
Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√2).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Окружность радиусом 13 клеток изображена на рис. 1
Узлы клеток, через которые проходит окружность, выделены.
Рекомендации для изображения такой окружности "от руки":
отмечаем точку в узле клетокдвигаемся вправо на 1 клетку, вверх на 5, отмечаем точкувправо на 1 клетку, вверх на 2, отмечаем точкувправо на 4 клетки, вверх на 4, отмечаем точкувправо на 2 клетки, вверх на 1, отмечаем точкувправо на 5 клеток, вверх на 1, отмечаем точку.
Если соединить эти точки плавной линией, получим четверть окружности.
Чтобы достроить окружность, надо повторить эти действия, изменяя направление движения.
а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3.
Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√2).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√2)+2*AD*BH=а²(2+√2)+4а² = а²(6+√2).
Окружность радиусом 13 клеток изображена на рис. 1
Узлы клеток, через которые проходит окружность, выделены.
Рекомендации для изображения такой окружности "от руки":
отмечаем точку в узле клетокдвигаемся вправо на 1 клетку, вверх на 5, отмечаем точкувправо на 1 клетку, вверх на 2, отмечаем точкувправо на 4 клетки, вверх на 4, отмечаем точкувправо на 2 клетки, вверх на 1, отмечаем точкувправо на 5 клеток, вверх на 1, отмечаем точку.Если соединить эти точки плавной линией, получим четверть окружности.
Чтобы достроить окружность, надо повторить эти действия, изменяя направление движения.
Правило можно кратко сформулировать так:
1-5, 1-2, 4-4, 2-1, 5-1