Дана правильная п-угольная пирамида, в которой:
А) п=6, сторона основания равна а и образует с боковым ребром пирамиды угол α.
Б) п=3, сторона основания равна в, а боковое ребро наклонено к основанию под углом α.
В) п=3, сторона основания равна в, а боковое ребро образует с высотой пирамиды угол α.
1. Векторы называются равными, если они сонаправлены и равны по длине. Длина вектора OA−→− вычисляется так: этот вектор является половиной вектора CA−→−, вектор CA−→− является диагональю квадрата в основании пирамиды, а значит, гипотенузой прямоугольного равнобедренного треугольника.
OA=CA:2=AB2+AB2−−−−−−−−−−√2=42+42−−−−−−√2=2,83
2. Поскольку стороны оснований относятся друг к другу как 4:2 или 2:1, то и диагонали оснований относятся друг к другу так же. Т.е. C1O1−→−−=CO:2=1,42 м
3. Опустим такую же высоту A1K и рассмотрим получившийся прямоугольный треугольник A1KA. KA - половина OA, и равен по найденному в п.2. 1,42 м. Угол A1AK 45°. Катет находим через второй катет и тангенс прилежащего к нему угла.
|O1O|−→−−−=A1A=KA⋅tan45=1,42 м