Радиус, проведенный в точку касания перпендикулярен касательной. Поэтому угол ОАС - прямой.
Тогда <OAB = <OBA = <OAC - <BAC = 90°-44°=46°
Второе решение для учителя, который хочет сложностей.
Рисунок у Вас есть, другого не нужно. Здесь особый интерес вызывает угол ВАС. Несмотря на то, что это угол между касательной и хордой, это вписанный угол (некоторые математики называют его вырожденным вписанным углом), который опирается на дугу АВ. Раз так, то угловая мера дуги АВ в два раза больше и равна 2*44 = 88°.
А угол ОАВ это стандартный центральный угол, который равен величине дуги, на которую опирается, то есть угол АОВ = 88°.
Треугольник АОВ - равнобедренный (две стороны ОА и ОВ радиусы), поэтому углы у основания ОАВ и ОВА = (180° - 88°)/2 = 46°
Объяснение:
Первое решение для учителя.
Радиус, проведенный в точку касания перпендикулярен касательной. Поэтому угол ОАС - прямой.
Тогда <OAB = <OBA = <OAC - <BAC = 90°-44°=46°
Второе решение для учителя, который хочет сложностей.
Рисунок у Вас есть, другого не нужно. Здесь особый интерес вызывает угол ВАС. Несмотря на то, что это угол между касательной и хордой, это вписанный угол (некоторые математики называют его вырожденным вписанным углом), который опирается на дугу АВ. Раз так, то угловая мера дуги АВ в два раза больше и равна 2*44 = 88°.
А угол ОАВ это стандартный центральный угол, который равен величине дуги, на которую опирается, то есть угол АОВ = 88°.
Треугольник АОВ - равнобедренный (две стороны ОА и ОВ радиусы), поэтому углы у основания ОАВ и ОВА = (180° - 88°)/2 = 46°
Точка F находится на расстоянии от плоскости квадрата 7 см
Объяснение:
L=9см
а=8см
Точка F находится на равном расстоянии от вершин квадрата ABCD.
Значит точка F перпендикулярно к точке пересечения диагоналей квадрата( к центру).
находим длины диагоналей квадрата по формуле
d=a√2 где а сторона квадрата
а=AB=BC=CD=DA=8см
d=a√2=8√2 см
так как точка F находится перпендикулярно к центру квадрата,
расстояние от центра от каждой вершины равна половине диагонали
d/2=8√2 /2=4√2 см
точка F находится на некоторой высоте над плоскостью квадрата, обозначим как h.
Тогда по теореме Пифагора
h=√L²-(d/2)²=√9² - (4√2)²=√81 - 32=√49=7см