1) 4-й угол в этом соотношении пропорционален цифре 2, так как сумма противоположных углов вписанного четырехугольника равна 180°. 2) Основания равны 16см и 12см, так как средняя линия равна полусумме оснований. 0,5(3х+4х)=14см, х=4см 3) Площадь ромба равна 10*5=50см², так как против угла 30° лежит катет, равный половине гипотенузы, значит а=2h=10см. 4) Теорема гласит: Для выпуклого n-угольника сумма всех углов равна 180°(n-2) . Получаем: 180°(n-2)=140°n; 180°n - 360° = 140°n; 40° n = 360°. n = 9 5)73°, 107°, 73° и 107°, так как сумма углов при одной стороне равна 180°, а противоположные углы равны.
HA = 6 см
КА = 6√2 см
КВ = 12 см
НВ = 6√3 см
см
Объяснение:
Проведем KH⊥α. Тогда КН = 6 см - расстояние от точки К до плоскости α.
Угол между прямой и плоскостью - это угол между прямой и ее проекцией на эту плоскость.
НА - проекция КА на плоскость α, значит ∠КАН = 45°,
НВ - проекция КВ на плоскость α, значит ∠КВН = 30°.
∠АНВ = 135°.
ΔКНА: ∠КНА = 90°, ∠КАН = 45°, значит треугольник равнобедренный,
НА = КН = 6 см
КА = 6√2 см как гипотенуза равнобедренного прямоугольного треугольника.
ΔКНВ: ∠КНВ = 90°,
КВ = 2КН = 12 см по свойству катета, лежащего против угла в 30°,
по теореме Пифагора:
НВ = √(КВ² - КН²) = √(144 - 36) = √108 = 6√3 см
Из ΔАНВ по теореме косинусов:
АВ² = НА² + НВ² - 2·НА·НВ·cos∠AHB
cos135° = cos(180° - 45°) = - cos45° = √2/2
AB² = 36 + 108 + 2 · 6 · 6√3 · √2/2 = 144 + 36√6
см
2) Основания равны 16см и 12см, так как средняя линия равна полусумме оснований. 0,5(3х+4х)=14см, х=4см
3) Площадь ромба равна 10*5=50см², так как против угла 30° лежит катет, равный половине гипотенузы, значит а=2h=10см.
4) Теорема гласит: Для выпуклого n-угольника сумма всех углов равна 180°(n-2) . Получаем: 180°(n-2)=140°n; 180°n - 360° = 140°n; 40° n = 360°. n = 9
5)73°, 107°, 73° и 107°, так как сумма углов при одной стороне равна 180°, а противоположные углы равны.