Ромб - параллелограмм. В параллелограмме противоположные углы равны, а сумма углов, прилежащих к одной стороне, равна 180º. Значит, угол АВС равен 180° - ∠DAB=180° -60°=120° ∠АВК и угол АВС - один и тот же. Поэтому угол АВК=120°. В ромбе диагонали являются биссектрисами его углов. ⇒ АС - биссектриса угла DАВ ⇒ ∠ САВ=60°:2=30° АК - биссектриса угла САВ. Так как биссектриса делит угол пополам, то АК при делении угла САВ делит его на два по 30°:2=15° В треугольнике сумма углов равна 180° В треугольнике АВК ∠АКВ+∠КАВ+∠АВК=180°⇒ ∠АКВ=180°-120°-15°=45°
В параллелограмме противоположные углы равны, а сумма углов, прилежащих к одной стороне, равна 180º.
Значит, угол АВС равен 180° - ∠DAB=180° -60°=120°
∠АВК и угол АВС - один и тот же. Поэтому угол АВК=120°.
В ромбе диагонали являются биссектрисами его углов. ⇒
АС - биссектриса угла DАВ ⇒ ∠ САВ=60°:2=30°
АК - биссектриса угла САВ. Так как биссектриса делит угол пополам, то АК при делении угла САВ делит его на два по 30°:2=15°
В треугольнике сумма углов равна 180°
В треугольнике АВК
∠АКВ+∠КАВ+∠АВК=180°⇒
∠АКВ=180°-120°-15°=45°
Для того, чтобы найти площадь прямоугольника мы должны найти длины сторон прямоугольника.
S = a * b;
Из условия нам известно, что периметр прямоугольника равен 80 см, а отношение сторон равно 2 : 3.
Вводим коэффициент подобия k и записываем длины сторон как 2k и 3k.
P = 2(a + b);
Составляем уравнение применив формулу для нахождения периметра:
2(2k + 3k) = 80;
2k + 3k = 80 : 2;
5k = 40;
k = 40 : 5;
k = 8.
Итак, стороны равны 2 * 8 = 16 см и 3 * 8 = 24 см.
Ищем площадь прямоугольника:
S = a * b = 16 * 24 = 384 см2.
Объяснение:
примерно так