Пусть в треугольнике АВС медиана ВМ к стороне АС. Тогда угол ВМА равен альфа, а угол ВМА равен 180°-альфа. Мы знаем, что cos(180-a)=-cosa. Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20). В треугольнике АВС по теореме косинусов имеем: АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1) В треугольнике ВМС по этой же теореме: ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2). Представим в (1) и (2) известные значения и просуммируем оба уравнения. Тогда получим: х^2=125-100Cosa + (22-x)^2=125+100Cosa равно х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х. х^2-22х+117=0. Х1=11+√(121-117)=13. Х2=11-2=9. ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.
Δ АВС, Δ АСD и Δ ВСD подобны по свойству высоты прямоугольного треугольника, проведенной из прямого угла к гипотенузе. Для удобства при вычислениях обозначим
длину АD равной х, длину СD равной у. Из подобия треугольников АСD и ВСD: х:5=у:12, По свойству пропорции: произведение средних членов пропорции равно произведению ее крайних членов: 5у=12х отсюда у=12х/5. Найдем АС из треугольника АСD по теореме Пифагора: AC²=x²+y² AC²=x²+144x²/25 AC =√(x²+144x²/25)=13x/5
Обозначим искомый радиус вписанной в треугольник АВС окружности R Составим пропорцию отношения радиусов R и r вписанных окружностей и меньших катетов в подобных треугольниках АВС и АСD
Мы знаем, что cos(180-a)=-cosa.
Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20).
В треугольнике АВС по теореме косинусов имеем:
АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1)
В треугольнике ВМС по этой же теореме:
ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или
ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2).
Представим в (1) и (2) известные значения и просуммируем оба уравнения.
Тогда получим:
х^2=125-100Cosa + (22-x)^2=125+100Cosa равно
х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х.
х^2-22х+117=0.
Х1=11+√(121-117)=13.
Х2=11-2=9.
ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.
Сделаем рисунок к задаче.
Δ АВС, Δ АСD и Δ ВСD подобны по свойству высоты прямоугольного треугольника, проведенной из прямого угла к гипотенузе.
Для удобства при вычислениях обозначим
длину АD равной х,
длину СD равной у.
Из подобия треугольников АСD и ВСD:
х:5=у:12,
По свойству пропорции: произведение средних членов пропорции равно произведению ее крайних членов:
5у=12х
отсюда
у=12х/5.
Найдем АС из треугольника АСD по теореме Пифагора:
AC²=x²+y²
AC²=x²+144x²/25
AC =√(x²+144x²/25)=13x/5
Обозначим искомый радиус вписанной в треугольник АВС окружности R
Составим пропорцию отношения радиусов R и r вписанных окружностей и меньших катетов в подобных треугольниках АВС и АСD
R:5=АС:х
R:5=(13x/5):х
Rх=5(13x/5)
R = 13 см