В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Угол равен 45 градусов, а высота проведена из вершины тупого угла на сторону параллелограмма. Получается треугольник, содержащий эту высоту и угол в 45 градусов. В треугольнике, как известно, 3 угла. Т.к. высота опускается (проводится) под прямым углом, то он равен 90 градусов. Имеем 2 угла: 45 градусов и 90 градусов. Найдем третий угол: 180-45-90=45 градусов. Получается, что у нас есть 2 одинаковых угла, значит, треугольник (в котором лежат эти углы и принадлежит высота) равнобедренный. Значит, высота равна половина стороны параллелограмма, на которую она опущена. Т.к. высота равна 3, то и половина стороны равна 3. Вся сторона параллелограмма состоит из двух таких равных частей, поэтому: 3+3=6 ответ: 6. Поставь как лучший, если не сложно)
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
ответ: 6.
Поставь как лучший, если не сложно)