1. д) через любые три точки проходит плоскость, и притом только одна. (аксиома)
2.д) бесконечно много ( т.е. имеют общую прямую, на которой лежат все общие точки этих плоскостей) или ни одной ( если они параллельны).
3. в) Три данные точки лежат на одной прямой - они принадлежат ей. Через прямую и точку D, не лежащую на этой прямой, можно провести плоскость, притом только одну. ответ:1;
4. в) определяют в любом случае; Через три точки, не лежащие на одной прямой, можно провести плоскость, причём только одну.
5. б) через прямую и не лежащую на ней точку проходит плоскость, и притом только одна;
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8. рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15. дальше. маленькое основание будет равно (15+6)-12=9 площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96
1. д) через любые три точки проходит плоскость, и притом только одна. (аксиома)
2.д) бесконечно много ( т.е. имеют общую прямую, на которой лежат все общие точки этих плоскостей) или ни одной ( если они параллельны).
3. в) Три данные точки лежат на одной прямой - они принадлежат ей. Через прямую и точку D, не лежащую на этой прямой, можно провести плоскость, притом только одну. ответ:1;
4. в) определяют в любом случае; Через три точки, не лежащие на одной прямой, можно провести плоскость, причём только одну.
5. б) через прямую и не лежащую на ней точку проходит плоскость, и притом только одна;
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8.
рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15.
дальше. маленькое основание будет равно (15+6)-12=9
площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96