Трапеция АВСД, АД=10, ВС=5, АС=12, ВД=9 проводим высоту СН на АД Площадь трапеции =1/2*(АД+ВС) * СН Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС) т.е. площадь треугольника АСК=площадь трапеции АВСД, площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр полупериметр треугольника АСК=(12+9+15)/2=18 площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД
Из курса геометрии известно, что у октагона - правильного восьмиугольника, стороны и внутренние углы равны между собой соответственно. Известно также, что сумма внутренних углов любого правильного многоугольника с n сторон рассчитывается по формуле ∑∠(n) = (n - 2)×180°. Применяя указанную формулу для данного восьмиугольника, получаем сумму ∑∠(8) = (8 - 2)×180° = 6×180° = 1080°, откуда следует, что ∠HGF заданного восьмиугольника равен ∠HGF = 1080°÷8 = 135°. Поскольку ∠HGF вписанный, а для вписанных углов известно, что они равны половине дуги, на которую они опираются, а значит, дуга F_H = 135°×2 = 270°. Тогда дуга, на которую опирается ∠FCH (условно - меньшая) составляет 360°-270°=90°, а вписанный угол ∠FCH, который на эту дугу опирается, равен ∠FCH = 90°÷2 = 45°
проводим высоту СН на АД
Площадь трапеции =1/2*(АД+ВС) * СН
Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК
площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС)
т.е. площадь треугольника АСК=площадь трапеции АВСД,
площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр
полупериметр треугольника АСК=(12+9+15)/2=18
площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД
Применяя указанную формулу для данного восьмиугольника, получаем сумму ∑∠(8) = (8 - 2)×180° = 6×180° = 1080°, откуда следует, что ∠HGF заданного восьмиугольника равен ∠HGF = 1080°÷8 = 135°.
Поскольку ∠HGF вписанный, а для вписанных углов известно, что они равны половине дуги, на которую они опираются, а значит, дуга F_H = 135°×2 = 270°. Тогда дуга, на которую опирается ∠FCH (условно - меньшая) составляет 360°-270°=90°, а вписанный угол ∠FCH, который на эту дугу опирается, равен ∠FCH = 90°÷2 = 45°