Дано дві мимобіжні прямі a і b. Точки А і B лежать на прямій а, точки С і D- на прямій b. Яке взаємне розміщення прямих AC і BD? паралельні мимобіжні перетинаються
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
В прямоугольном треугольнике ACB (∠С=90°) проведена высота CD.Гипотенуза AB равна 10 см, ∠CBA=30°.Найдите BD .
Дано : ΔABC
∠ACB =90° ;
СD ⊥ AB ;
AB =10 см ;
∠CBA = 30°.
- - - - - - -
BD - ?
- - - - - - можно решать разными но
AC = AB/2 =10/2 = 5 (см)_как катет лежащий против угла ∠CBA=30°
AB² = AC²+СB² ( теорема Пифагора)
CB² = AB² -AC² =10² -5² =75 СB=√75 = 5√3 (см)
Но CB² =AB*BD (пропорциональные отрезки в прямоугольном Δ -е)
BD = CB²/ AB =75/ 10 =7,5 (см ) ответ : 7,5 см .
2-ой
∠ACD = ∠CBA = 30° (углы со взаимно перпендикулярными сторонами) следовательно
AD = AC/ 2 (опять как катет против угла ∠ACD =30° в ΔADC )
AD =5/2 =2,5 см ; BD =AB -AD =10 -2,5 =7,5 (см )
см приложение
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.