Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см
Объяснение:
Значения разных тригонометрических функций для одного угла связаны между собой основными тригонометрическими тождествами:
Зная значение одной тригонометрической функции угла, можно найти все остальные.
Задача 1. Найти неизвестные тригонометрические функции угла, если:
Решение
Можно, конечно, найти угол, зная, что угол лежит в интервале от до , а его косинус равен (см. рис. 16).
Рис. 16. Иллюстрация к задаче 1
Зная определение тригонометрической функции (косинус – абсцисса соответствующей точки на окружности) (см. рис. 17), несложно получить, что:
Т. е. .
Рис. 17. Иллюстрация к задаче 1
Но мы рассмотрим общий ведь нам не обязательно «повезет» с табличным значением тригонометрической функции.
Чтобы найти синус, зная, косинус, воспользуемся тождеством, которое их связывает, а именно:
Выразим из него синус:
Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см
Объяснение:
Значения разных тригонометрических функций для одного угла связаны между собой основными тригонометрическими тождествами:
Зная значение одной тригонометрической функции угла, можно найти все остальные.
Задача 1. Найти неизвестные тригонометрические функции угла, если:
Решение
Можно, конечно, найти угол, зная, что угол лежит в интервале от до , а его косинус равен (см. рис. 16).
Рис. 16. Иллюстрация к задаче 1
Зная определение тригонометрической функции (косинус – абсцисса соответствующей точки на окружности) (см. рис. 17), несложно получить, что:
Т. е. .
Рис. 17. Иллюстрация к задаче 1
Но мы рассмотрим общий ведь нам не обязательно «повезет» с табличным значением тригонометрической функции.
Чтобы найти синус, зная, косинус, воспользуемся тождеством, которое их связывает, а именно:
Выразим из него синус: