Не было под рукой листочка А4, так что нарисовал в paint. Надеюсь, вам будет понятен чертеж.
Итак:
ABC- данный треугольник.(я взял остроугольный, чтобы было удобнее работать с ним)
AK,BG,CF-биссектрисы.(синие)
Они действительно пересеклись в одной точке X.
AM,BN,CL-медианы.(красные)
Они действительно пересеклись в одной точке Y.
AH1,BH2,CH3-высоты.(зелёные)
Они действительно пересеклись в одной точке Z.
Точки Х,У,Z можно соединить, получим окружность.
Вывод:
В неравнобедренном треугольнике точки пресечения биссектрис, медиан и высот лежат на одной окружности.
Ну, собственно, и все.
P.S. А насчет вывода я немного не уверен, просто у меня по счастливой случайности, такой чертеж вышел, а факт этот я не доказывал. Возможно, это и не будет окружностью вовсе, а просто треугольником. Но это решать не мне, а модераторам.
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Не было под рукой листочка А4, так что нарисовал в paint. Надеюсь, вам будет понятен чертеж.
Итак:
ABC- данный треугольник.(я взял остроугольный, чтобы было удобнее работать с ним)
AK,BG,CF-биссектрисы.(синие)
Они действительно пересеклись в одной точке X.
AM,BN,CL-медианы.(красные)
Они действительно пересеклись в одной точке Y.
AH1,BH2,CH3-высоты.(зелёные)
Они действительно пересеклись в одной точке Z.
Точки Х,У,Z можно соединить, получим окружность.
Вывод:
В неравнобедренном треугольнике точки пресечения биссектрис, медиан и высот лежат на одной окружности.
Ну, собственно, и все.
P.S. А насчет вывода я немного не уверен, просто у меня по счастливой случайности, такой чертеж вышел, а факт этот я не доказывал. Возможно, это и не будет окружностью вовсе, а просто треугольником. Но это решать не мне, а модераторам.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.