Обозначим диагональ равнобокой трапеции за d (диагонали равны). Тогда площадь можно выразить через диагонали и угол между ними - S=1/2*d²*sin(a), где sin(a) - синус угла между диагоналями. Мы знаем, что 1/2*d²*sin(a)=1, d²*sin(a)=2. Значение d будет наименьшим в случае, если значение sina наибольшее. Оно наибольшее, когда a=90 градусам, то есть, когда диагонали пересекаются под прямым углом. В этом случае sin(a)=1, d²=2, d=√2. Таким образом, наименьшее значение диагонали равнобокой трапеции с площадью 1м² - √2м.
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg