Через 2 прямые МР и НО можно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения
Объяснение:
Начертить прямую произвольной длины.
С циркуля и линейки возвести перпендикуляр, равный данной высоте.
( Это одно из простейших построений, Вы наверняка умеете его делать)
Обозначить основание перпендикуляра Н, а свободный конец - В. Это вершина треугольника.
Раствором циркуля, равным длине одной из сторон, из В, как из центра, провести полуокружность до пересечения с первой прямой.
Точку пересечения обозначить А.
Соединив А и В, получим сторонуАВ.
Точно так же отложить вторую сторону раствором циркуля, равным ее длине.
Обозначить точку пересечения дуги с прямой С и соединить с В.
Можно несколько иначе построить вторую сторону.
От А отложить длину второй известной стороны.
Свободный конец обозначить С.
Соединив С и В, получим сторону ВС.
Треугольник по двум сторонам и высоте построен.
Через 2 прямые МР и НО можно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения
МН^2 = (МР - НО)^2 + РО^2;
МН^2 = (24 - 12)^2 + 5^2;
МН =13