Трапеция ABCD; AD = 16 см. Угол BAD = 30; Угол ADC = 90. Так как ВD диагональ, образующая перпендикуляр со стороной BA, то треугольник ABD - прямоугольный. По свойству катета против угла в 30 градусов: Угол BAD = 30, AD=16, следовательно катет BD = 8 см. Угол BCD = 90, ABC = 150. Так как угол ABD = 90 градусов, то угол DBC = 150-90=60 градусов. CDB = 30 градусов. По свойству катета против угла в 30 градусов: CDB = 30 градусов. BD = 8 см. ВС = 4 см, как катет против угла в 30 градусов. Средняя линия трапеции, обозначим её, как LK. LK= BC + AD/ 2 = 4 + 16 / 2 = 10 см. ответ: LK = 10 см.
Треугольники МВС и АМР подобны, и ВС/AP = 1/2; => CM/AM = 1/2; откуда AM = 2*CM; AC = AM + CM = 2*CM + CM = 3*CM; СМ = AC/3; подобны и треугольники ВОС и AOD, и CO/OA = BC/AD = 1/4; то есть AO = 4*CO; AC = AO + OC = 4*OC + OC = 5*AC; CO = AC/5; отсюда MO = CM - CO = AC*(1/3 - 1/5) = AC*2/15; Точно так же показывается, что NO = BD*2/15; (ясно, что BO = DO/4; откуда BD = BО +OD = BO + 4*BO = 5*BO; а из подобия треугольников BNC и PMD => BN/ND = BC/PD = 1/2; ND = 2*BN; BD = ND + BN = 3*BN; далее ON = BN - BO = BD*(1/3 - 1/5) = BD*2/15); Если провести CК II BD, точка К лежит на продолжении AD, то BDKC – параллелограмм, и CK = BD; и угол AOD = угол ACK; треугольник ACK подобен треугольнику MON, потому что соответственные стороны пропорциональны (NO = BD*2/15 = CK*2/15; MO = AC*2/15, угол AOD = угол ACK). Коэффициент подобия равен 2/15. Поскольку AK = AD + BC, площадь треугольника ACK равна h*(AD + BC)/2, где h – расстояние от С до AD, то есть – высота трапеции ABCD и треугольника ACK (словами это можно выразить так - у трапеции и построенного треугольника "общая" высота и равные средние линии). То есть площадь ACK равна площади трапеции S. Стороны относятся, как 2/15, значит, площади, как (2/15)^2; Отсюда площадь MON равна S*(2/15)^2 = 50*4/225 = 8/9;
Угол BAD = 30; Угол ADC = 90.
Так как ВD диагональ, образующая перпендикуляр со стороной BA, то треугольник ABD - прямоугольный.
По свойству катета против угла в 30 градусов:
Угол BAD = 30, AD=16, следовательно катет BD = 8 см.
Угол BCD = 90, ABC = 150.
Так как угол ABD = 90 градусов, то угол DBC = 150-90=60 градусов.
CDB = 30 градусов.
По свойству катета против угла в 30 градусов:
CDB = 30 градусов.
BD = 8 см. ВС = 4 см, как катет против угла в 30 градусов.
Средняя линия трапеции, обозначим её, как LK.
LK= BC + AD/ 2 = 4 + 16 / 2 = 10 см.
ответ: LK = 10 см.
подобны и треугольники ВОС и AOD, и CO/OA = BC/AD = 1/4; то есть AO = 4*CO; AC = AO + OC = 4*OC + OC = 5*AC; CO = AC/5;
отсюда MO = CM - CO = AC*(1/3 - 1/5) = AC*2/15;
Точно так же показывается, что NO = BD*2/15; (ясно, что BO = DO/4; откуда BD = BО +OD = BO + 4*BO = 5*BO; а из подобия треугольников BNC и PMD => BN/ND = BC/PD = 1/2; ND = 2*BN; BD = ND + BN = 3*BN; далее ON = BN - BO = BD*(1/3 - 1/5) = BD*2/15);
Если провести CК II BD, точка К лежит на продолжении AD, то BDKC – параллелограмм, и CK = BD; и угол AOD = угол ACK;
треугольник ACK подобен треугольнику MON, потому что соответственные стороны пропорциональны (NO = BD*2/15 = CK*2/15; MO = AC*2/15, угол AOD = угол ACK). Коэффициент подобия равен 2/15.
Поскольку AK = AD + BC, площадь треугольника ACK равна h*(AD + BC)/2, где h – расстояние от С до AD, то есть – высота трапеции ABCD и треугольника ACK (словами это можно выразить так - у трапеции и построенного треугольника "общая" высота и равные средние линии).
То есть площадь ACK равна площади трапеции S.
Стороны относятся, как 2/15, значит, площади, как (2/15)^2;
Отсюда площадь MON равна S*(2/15)^2 = 50*4/225 = 8/9;
задача уже несколько раз была