Угол, который надо найти_ внешний угол при вершине В, он равен сумме двух внутренних, не смежных с ним,т.е. ∠А+∠С, т.к. в ΔАВД сумма острых равна 90град., то
∠А=90град.-20град., =70град.
Т.к. в ΔАВС АВ=АС, то ∠В=∠С=(180град. - 70град.)/2=55град. И тогда искомый угол СВЕ=70град. +55 град. =125 град.
Можно было бы и так. 180град. -∠АВС=180 град. -55 град. =125 град.
Угол, который надо найти_ внешний угол при вершине В, он равен сумме двух внутренних, не смежных с ним,т.е. ∠А+∠С, т.к. в ΔАВД сумма острых равна 90град., то
∠А=90град.-20град., =70град.
Т.к. в ΔАВС АВ=АС, то ∠В=∠С=(180град. - 70град.)/2=55град. И тогда искомый угол СВЕ=70град. +55 град. =125 град.
Можно было бы и так. 180град. -∠АВС=180 град. -55 град. =125 град.
ответ ∠СВЕ=125 град.