∠CBD=∠BDA- внутренние накрест лежащие при параллельных BC и AD и секущей BD ∠BCA=∠CAD- внутренние накрест лежащие при параллельных BC и AD и секущей AC
Треугольники BMC и DAM подобны по двум углам
По теореме Пифагора АС²=10²+16²=100+256=356 АС=2√89
По теореме Пифагора BD²=AB²+AD²=10²+24²=100+576=676 BD=26
Из подобия треугольников BMC и DAM следует пропорциональность сторон BM: MD=BC:AD BM:(26-BM)=16:24 16·(26-BM)=24BM 40BM=416 BM=10,4 MD=26-10,4=15,6
3. Это прямоугольный треугольник с равными катетами. Значит гипотенуза это 2√5² (корень и квадрат удалятся)
2×5=х²
Корень обоих сторон
х=√10
4. х - прилежащая сторона
cos(30°) = прилеж./гипотенуза
cos(30°) = х/2√3
Найдите значение cos(30°) на калькуляторе или таблице
(√3)/2 = х/2√3
Умножить стороны на 2√3, √3 * √3 будет 3
2*3/2 = х
Перекреслить 2
х = 3
5. Низ треугольника 16
Треугольник состоит из двух прямоугольных треугольников, в которых нижний катет половина нижнего катета этого треугольника (8)
по теореме пифагора получается
8²+х²=17²
Отнять 8² от обоих сторон
х²= 17²-8²
Вычислите: 17²=289, 8²=64, 289-64=225
Корень обоих сторон
х = 15
6. Так как треугольник правильный (равносторонний) все стороны как правило 6, снова будет 2 прямоуг. Треугольника получаться .. (довольно аналогично предыдущей задаче)
3²+х²=6²
х²=36-9
х=√27
запишите 27 как 3²*3
х= √(3²*3)
Извлечь корень обоих множителей
х= √3²*√3
х = 3√3
7. Похоже на предыдущую задачу.
х²-8²=(х/2)²
Возвести дробь в степень, возвев в эту степень знаменатель и числитель, прибавить 64 к обоим сторонам
х²=х²/4+64
умножить на 4 обои стороны
4х²=х²+256
перенести х² влево и сменить знак.
4х²-х²-256 = 0
3х²=256
Делить на 3 стороны
х²=256/3
Корень обоих сторон, использовать свойство корней снова
х= (√256)/√3
8. 10²+х²=26²
Перенести 10 вправо и сменить знак
х²=26²-10²
Используйте а²-б²= (а+б)(а-б)
х²=(26+10)(26-10)
х²=36*16
Записать как 6² и 4², умножить степени одинаковых показателей умножив основания.
∠BCA=∠CAD- внутренние накрест лежащие при параллельных BC и AD и секущей AC
Треугольники BMC и DAM подобны по двум углам
По теореме Пифагора
АС²=10²+16²=100+256=356
АС=2√89
По теореме Пифагора
BD²=AB²+AD²=10²+24²=100+576=676
BD=26
Из подобия треугольников BMC и DAM следует пропорциональность сторон
BM: MD=BC:AD
BM:(26-BM)=16:24
16·(26-BM)=24BM
40BM=416
BM=10,4
MD=26-10,4=15,6
CM: MA=BC:AD
CM:(2√89 - CM)=16:24
16·(2√89 - CM)=24·CM
40·CM=32·√89
CM=0,4·√89
MA=√89 - 0,4·√89 = 0,6·√89
Р(Δ MAD)=MA+AD+DM=0,6√89+24+15,6=39,6+0,6·√89=0,6·(66+√89)=
1. Теорема пифагора
3²+4²=х²
Вычислить
25=х²
х=5
2. 13 гипотенуза
4²+х²=13²
Отнять от обоих сторон 4²
х²=13²-4²
Использовать а²-б²=(а+б)(а-б)
х²=17*9
Квадратный корень от обоих сторон
х = 3√17
3. Это прямоугольный треугольник с равными катетами. Значит гипотенуза это 2√5² (корень и квадрат удалятся)
2×5=х²
Корень обоих сторон
х=√10
4. х - прилежащая сторона
cos(30°) = прилеж./гипотенуза
cos(30°) = х/2√3
Найдите значение cos(30°) на калькуляторе или таблице
(√3)/2 = х/2√3
Умножить стороны на 2√3, √3 * √3 будет 3
2*3/2 = х
Перекреслить 2
х = 3
5. Низ треугольника 16
Треугольник состоит из двух прямоугольных треугольников, в которых нижний катет половина нижнего катета этого треугольника (8)
по теореме пифагора получается
8²+х²=17²
Отнять 8² от обоих сторон
х²= 17²-8²
Вычислите: 17²=289, 8²=64, 289-64=225
Корень обоих сторон
х = 15
6. Так как треугольник правильный (равносторонний) все стороны как правило 6, снова будет 2 прямоуг. Треугольника получаться .. (довольно аналогично предыдущей задаче)
3²+х²=6²
х²=36-9
х=√27
запишите 27 как 3²*3
х= √(3²*3)
Извлечь корень обоих множителей
х= √3²*√3
х = 3√3
7. Похоже на предыдущую задачу.
х²-8²=(х/2)²
Возвести дробь в степень, возвев в эту степень знаменатель и числитель, прибавить 64 к обоим сторонам
х²=х²/4+64
умножить на 4 обои стороны
4х²=х²+256
перенести х² влево и сменить знак.
4х²-х²-256 = 0
3х²=256
Делить на 3 стороны
х²=256/3
Корень обоих сторон, использовать свойство корней снова
х= (√256)/√3
8. 10²+х²=26²
Перенести 10 вправо и сменить знак
х²=26²-10²
Используйте а²-б²= (а+б)(а-б)
х²=(26+10)(26-10)
х²=36*16
Записать как 6² и 4², умножить степени одинаковых показателей умножив основания.
х²=(6*4)²
Корень обоих сторон
х=24