В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
крист34
крист34
28.12.2021 13:23 •  Геометрия

Дано:трикутник АВС і трикутник АВТОD,АВ-бісеру риса кутів CAD i CBD,CB=5см. Знацти нужно с объяснением

Показать ответ
Ответ:
golgotha
golgotha
29.11.2022 12:16

Длина окружности вычисляется по формуле:

С = 2πR      или       C = πd

где R - радиус окружности,

d - диаметр окружности.

а) Радиус окружности, описанной около правильного треугольника:

R = a√3/3

C = 2πa√3/3

б) Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и гипотенуза является диаметром окружности.  Гипотенузу найдем по теореме Пифагора:

с = √(a² + b²)

C = πd = π√(a² + b²)

в) Проведем высоту к основанию равнобедренного треугольника. Она является так же медианой. Из образовавшегося прямоугольного треугольника выразим косинус угла при основании:

cosα = (a/2) / b = a / (2b).

Из основного тригонометрического тождества получим:

sinα = √(1 - cos²α) = √(1 - a²/(4b²)) = \frac{\sqrt{4b^{2}-a^{2}} }{2b}

Радиус окружности, описанной около любого треугольника, равен отношению стороны к удвоенному синусу противолежащего угла:

R = b/(2sinα)

R=b*\frac{2b}{2\sqrt{4b^{2}-a^{2}} } =\frac{b^{2} }{\sqrt{4b^{2}-a^{2}} }

C=\frac{2\pi*b^{2}}{\sqrt{4b^{2}-a^{2}} }

г) Центр окружности, описанной около прямоугольника, лежит в точке пересечения диагоналей. Радиус ее равен половине диагонали.

Из треугольника, образованного меньшей стороной и двумя половинами диагоналей по теореме косинусов:

a² = R² + R² - 2R·R·cosα = R²(2 - 2cosα)

R² = a² / (2 - 2cosα)

R = a / √(2 - 2cosα)

C = 2πa / √(2 - 2cosα)

д) Правильный шестиугольник делится диагоналями, проведенными через центр, на шесть равных равносторонних треугольников. Тогда площадь одного треугольника:

S = 24√3 / 6 = 4√3 см²

S = a²√3 / 4, где а - сторона треугольника.

a = √(4S / √3) = √(4 · 4√3 / √3) = 4 см

Сторона шестиугольника равна радиусу описанной окружности, тогда

R = a = 4 см

С = 2π · 4 = 8π см

0,0(0 оценок)
Ответ:
thevenyaname
thevenyaname
01.01.2020 00:15

Продлим касательные до их пересечения в точке М.  

Центры О и О₁ касающихся  окружностей лежат на  биссектрисе МО угла СМD.

r =O₁B=45,  R=OD=90. 

Радиусы О₁В и ОD, проведенные в точки касания, перпендикулярны касательной МD (свойство радиусов). 

 Из О₁ проведем О₁Н ║ МD.  В параллелограмме О₁ВDО ∠В=∠D= 90°, следовательно, О₁ОDВ - прямоугольник.  

HD=O₁B, ОН=90-45=45. 

Прямоугольные ∆ МО₁В и ∆ МОD подобны по общему острому углу при М. 

ОО₁=R+r=90+45=135

Косинус  равных углов при О и О₁=ОН/ОО₁=45/135=1/3. 

Тогда КО₁=О₁В•cos KO₁B=45•1/3=15

TO=DO•cos TOD=90•1/3=30

Расстояние   между АВ и СD  равно 

КТ=ОО₁-ТО+КО₁=135-30+15=120 (ед. длины)


Окружности радиусов 45 и 90 касаются внешним образом. точки a и b лежат на первой окружности, точки
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота