дано трикутник bcd. Площина, параллельна прямій bc, перетинає сторону bd убого трикутника в точці b1, а сторону cd -- у точці c1. знайдіть довжину відрізка b1c1 якщо: b1d=6см bc:bd=2:3
Дано: ABCD — паралаллелограмм; P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°. Найти: AB, BC, CD, AD. Решение. ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°) BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. AB = 2BH = 2 * 7,5 см = 15см AB = CD, BC = AD (по определению параллелограмма) CD = AB = 15 см P = 2AB + 2BC 2BC = 80 см - 2 * 15см = 50 см AD = BC = 50 см : 2 = 25 см ответ: AB = CD = 15 см, BC = AD = 25 см.
P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°.
Найти: AB, BC, CD, AD.
Решение.
ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°)
BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы.
AB = 2BH = 2 * 7,5 см = 15см
AB = CD, BC = AD (по определению параллелограмма)
CD = AB = 15 см
P = 2AB + 2BC
2BC = 80 см - 2 * 15см = 50 см
AD = BC = 50 см : 2 = 25 см
ответ: AB = CD = 15 см, BC = AD = 25 см.
1.<А=40°
2. 18 см
Объяснение:
1. АВ=CD и BC=AD по условию, сторона BD общая доя двух треуголиников.
Соответственно по третьему признаку равенства треуголиников треугольники ABD и CBD равны
Исходя из этого имеем угол С равен углу А и равен 40°
2. Медиана делит сторону пополам. Исходя из этого получаем: АК=ВК=2 см, ВМ=СМ=3 см и АN=CN=4 см
АВ= АК+ВК=2АК=2*2=4 см
ВС= ВМ+СМ=2ВМ=2*3=6 см
АС= AN+CN=2CN=2*4=8 см
Периметр треугольника АВС=АВ+ВС+АС=4+6+8=18 см
3. Треугольник АВС равнобедренный, значит АВ=ВС. BM=BN по условию задачи. Соответственно получаем, что АМ=СN.
BD Медиана, значит получаем что АD=CD.
Так как треугольник АВС равнобедренный, соответственно угол А равен углу С.
По первому признаку равенства треугольников получаем, что треугольник MAD равен треугольнику NCD.
Из этого получаем, что MD=ND