У задачи решения. если АВ перпендикулярна плоскости) В этом случае необходимо найти АМ: АМ:МВ = 2:3, АВ = АМ + МВ=> 2х + 3х = 12,5 5х = 12,5 х = 2,5 АМ = 2х = 2 * 2,5 = 5 (м) если АВ является наклонной к плоскости)Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМMD = (12,5 * 2) / 5 = 5 (м)
угол прямоугольника равен 90°
диагональю он делится в отношении 4: 5, т.е. на углы
90: (4+5)*4=40°
и 90: (4+5)*5=50°
диагонали прямоугольника равны и точкой пересечения со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
углы треугольника с боковой стороной равны 40°,40°,100°
углы треугольника, образованного диагоналями с основанием, равны
50°,50°,80°.
ответ: диагонали прямоугольника при пересечении образуют углы 100°и 80°
если АВ перпендикулярна плоскости)
В этом случае необходимо найти АМ:
АМ:МВ = 2:3, АВ = АМ + МВ=> 2х + 3х = 12,5
5х = 12,5
х = 2,5
АМ = 2х = 2 * 2,5 = 5 (м)
если АВ является наклонной к плоскости)Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМMD = (12,5 * 2) / 5 = 5 (м)