1. ABCD - сечение цилиндра, проведенное параллельно оси. BD = 6 см, ∠BDA = 45°. ΔBDA: ∠BAD = 90°, ∠BDA = 45°, ⇒ ∠DBA = 45°, ⇒ BA = AD = x x² + x² = 6² 2x² = 36 x = √18 = 3√2 H = AB = 3√2 см - высота цилиндра.
Дуга AD 60°, ⇒ ∠AOD = 60° (центральный) ΔAOD: AO = OD = R, ∠AOD = 60°, ⇒ треугольник равносторонний. R = AD = 3√2 см
Sбок = 2πRH = 2π· 3√2· 3√2 = 36π см²
2. ВО = 6 см - высота конуса, ОС = 2√3 дм - радиус основания. ΔВОС: ∠ВОС = 90°, по теореме Пифагора ВС = √(ВО² + ОС²) = √(0,36 + 12) = √12,36 дм
Сечение ΔАВС - равносторонний, так как АВ = ВС как образующие, ∠АВС = 60°. Sabc = a²√3/4, где а - сторона равностороннего треугольника. Sabc = 12,36√3/4 = 3,09√3 дм²
Меньшая диагональ основания призмы (ромба) равна стороне ромба, так как в треугольнике АВD все углы по 60°. Итак, ВD=2√3. Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3. Тогда АС=6см. В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°. Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2. Или так:В'В=BD*tg30°=2√3*(√3/3)=2. ВВ'=СС'=2. Это высота призмы. Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору: АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10. ответ: большая диагональ призмы равна 2√10.
BD = 6 см, ∠BDA = 45°.
ΔBDA: ∠BAD = 90°, ∠BDA = 45°, ⇒ ∠DBA = 45°, ⇒
BA = AD = x
x² + x² = 6²
2x² = 36
x = √18 = 3√2
H = AB = 3√2 см - высота цилиндра.
Дуга AD 60°, ⇒ ∠AOD = 60° (центральный)
ΔAOD: AO = OD = R, ∠AOD = 60°, ⇒ треугольник равносторонний.
R = AD = 3√2 см
Sбок = 2πRH = 2π· 3√2· 3√2 = 36π см²
2. ВО = 6 см - высота конуса,
ОС = 2√3 дм - радиус основания.
ΔВОС: ∠ВОС = 90°, по теореме Пифагора
ВС = √(ВО² + ОС²) = √(0,36 + 12) = √12,36 дм
Сечение ΔАВС - равносторонний, так как АВ = ВС как образующие, ∠АВС = 60°.
Sabc = a²√3/4, где а - сторона равностороннего треугольника.
Sabc = 12,36√3/4 = 3,09√3 дм²
так как в треугольнике АВD все углы по 60°.
Итак, ВD=2√3.
Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3.
Тогда АС=6см.
В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°.
Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2.
Или так:В'В=BD*tg30°=2√3*(√3/3)=2.
ВВ'=СС'=2. Это высота призмы.
Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору:
АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10.
ответ: большая диагональ призмы равна 2√10.