Даны координаты концов отрезка АВ: 1) А(3;-5), В(-9;11). Точка С делит отрезок АВ в отношении 3:1.
2) А(-10;6), В(12;-8). Точка С делит отрезок АВ в отношении 5:2.
3) А(-5;-12), В(0;9). Точка С делит отрезок АВ в отношении 4:3.
Найти координата точки С.
30·40/50=24
(эта формула следует из того, что площадь прямоугольного треугольника можно сосчитать как половина произведения катетов, а можно как половина произведения гипотенузы на высоту)
ответ: 24
4^2=2c⇒c=8⇒второй кусок гипотенузы равен 8-2=6.
Квадрат высоты прямого угла равен произведению отрезков гипотенузы:
h^2=2·6=12⇒h=√12=2√3
Площадь треугольника равна половине произведения стороны на высоту⇒
S=(1/2)·8·2√3=8√3
ответ: 8√3
Второй Треугольник ABC; C- прямой угол, BC=4; CD - высота, BD=2⇒в прямоугольном треугольнике BCD гипотенуза BC в два раза больше катета BD⇒∠BCD=30°⇒∠CBD=90-30=60°⇒∠CAB=90-60=30°⇒ гипотенуза AB в два раза больше катета BC⇒AB=4·2=8. Площадь треугольника найдем по формуле половина произведения двух сторон на синус угла между ними:
S=(1/2) BC·BA·sin B=(1/2)4·8·(√3)/2=8√3