Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора. AB−→−{2;10}.
B(1;6); A(
;
).
2. Даны координаты вектора и
начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{−7;6}.
M(−3;−8); N
∠А+∠В+∠С=180, так как треугольник равнобедренный ∠В=∠С, а угол ∠А=42,получаем: 42+∠В+∠В=180, ∠В=69
∠А1+∠В1+∠С1=180, так как треугольник равнобедренный ∠В=∠С=69,подставляем: ∠А1+69+69=180, ∠А1=42
∠А=∠А1=42,
∠В=∠В1=69
∠С=∠С1=69, значит треугольники подобны по трем углам.
1) возьмём производную функции, и обнаружим, что y' = 2x+1
Интересует точка х0=1, знач производная в этой точке будет y'(1) = 3
это коэффициент наклона касательной, он получается 3.
уравнение касательной имеет вид y=kx+c, при этом k=3, значит
y=3x+c, теперь нужно найти константу с.
Значение функции у в т.х0 = 1+1+1 = 3, такое же значение будет иметь и касательная в т.х0=1 тоже. Значит
3 = 3* х0+с
3 = 3 + с
с = 0
Итого, ответ: касательная имеет уравнение у=3х
2) всё аналогично
y' = 6x-7
k = y'(2) = 12-7 = 5 --- полдела сделано
y(2) = 12-14+10 = 8
8 = 5 * x0 + c = 5 * 2 + c
8 = 10 + c
c = -2
получаем уравнение: у = 5х - 2
3) ещё аналогичнее
y' = 2x - 4
k = y'(-1) = -2-4=-6
y(-1) = 1 + 4 + 3 = 8
y(-1) = -6 * x0 + c
8 = -6 * (-1) + c
8 = 6 + c
c = 2
получаем уравнение: у = -6х + 2
Вроде так, если не наврал нигде. Лучше проверь за мной.