1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Объяснение:
1)Рассмотрим △АВС.
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.