Дано:а параллельна b ,Доказать:все точки каждой из двух параллельных прямых равноудалены от другой прямой.Доказательство:Проведем перпендикуляры из точек М и К.Прямая МN перпендикулярна прямой b и КL перпендикулярна прямой b.Перпендикуляры равны(так как прямые параллельны)Таким образом если из каждой точки на любой прямой провести перпендикуляр к другой прямой,то все перпендикуляры этих параллельных прямых равны и эти параллельные прямые равноудалены друг от друга как и все их точки,что и требовалось доказать
1)9 , 16, 12 см
Объяснение:
1)сначала находим катеты (3х и 4х) по теореме пифагора : 16х^2+9х^2= 625; х^2=25; х=5 см. один катет - 15 см , а второй - 20 см;
пусть одна часть гипотенузы равна у, тогда вторая -25-у (высота делит гипотенузу на две части ).
за формулой 15^15= у*25; у=9см, тогда 25-у= 16 см. (это проекции)
высота = 12 см (вымотав в квадрате = 9*16)
2) гипотенуза = корень из 81+ корень из 144 (под одним корнем )= 15 см
одна часть гипотенузы равна х, вторая -15-х. тогда 25=15х-х^2;
ну и находим х(это будет проекция , которая будет 15-х)