Даны плоскость , прямая и точка .Найти уравнение прямой, проходящей через точку M параллельно заданной плоскости так, чтобы она пересекала данную прямую и найти эту точку пересечения.
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25