Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
В четырехугольник можно вписать окружность только тогда, когда суммы его противоположных сторон равны. В равнобедренной трапеции боковые стороны равны. Следовательно, в данной трапеции полусумма оснований равна боковой стороне. (a+b)/2=c
Средняя линии трапеции равна полусумме оснований. Следовательно, в данной трапеции средняя линия равна боковой стороне. m=c
Площадь трапеции равна S=(a+b)h/2 или S=mh. Следовательно, в данной трапеции площадь равна произведению боковой стороны на высоту. S=сh
Биссектрисы углов данной трапеции пересекаются в одной точке.
Радиус вписанной окружности равен половине высоты (центр вписанной окружности равноудален от оснований). h=2r
Задача. В равнобедренной трапеции точка касания вписанной окружности делит боковую сторону на отрезки x и y. Найти площадь трапеции.
Сумма углов, прилежащих боковой стороне трапеции, равна 180. В треугольнике, образованном отрезками биссектрис и боковой стороной, острые углы являются половинами углов, прилежащих боковой стороне трапеции, следовательно их сумма равна 90, треугольник прямоугольный. Высота из прямого угла равна среднему геометрическому отрезков, на которые она делит гипотенузу. Высота в данном случае является радиусом вписанной окружности. r=√(xy)
(a+b)/2=c
Средняя линии трапеции равна полусумме оснований. Следовательно, в данной трапеции средняя линия равна боковой стороне.
m=c
Площадь трапеции равна S=(a+b)h/2 или S=mh. Следовательно, в данной трапеции площадь равна произведению боковой стороны на высоту.
S=сh
Биссектрисы углов данной трапеции пересекаются в одной точке.
Радиус вписанной окружности равен половине высоты (центр вписанной окружности равноудален от оснований).
h=2r
-----------------------------------------------------------------------------------------------------------------
Задача. В равнобедренной трапеции точка касания вписанной окружности делит боковую сторону на отрезки x и y. Найти площадь трапеции.
Сумма углов, прилежащих боковой стороне трапеции, равна 180. В треугольнике, образованном отрезками биссектрис и боковой стороной, острые углы являются половинами углов, прилежащих боковой стороне трапеции, следовательно их сумма равна 90, треугольник прямоугольный. Высота из прямого угла равна среднему геометрическому отрезков, на которые она делит гипотенузу. Высота в данном случае является радиусом вписанной окружности.
r=√(xy)
S =ch =(x+y)*2r =2(x+y)√(xy)