По условию, вd=11.3 см, и он является катетом в прямоуг. треугольнике bdc. гипотенуза этого треугольника (bd) в 2 раза меньше катета=> по свойству прямоугольного треугольника если катет в 2 раза меньше гипотенузы то острый угол напротив этого катета равен 30 градусам. то есть > с равен 30 градусам. так как авс равнобедренный, углы при основании равны то есть < а=< с=30 градусов. мы знаем, что сумма углов треугольника равна 180. тогда < а=180-30-30=120 градусов. ответ: < вас=30 < вса=30 < авс=120
Так как r=S/p, где r - радиус вписанной окружности, S - площадь треугольника, p - его полупериметр (p=(a+b+c)/2, где a,b,c - стороны треугольника), для нахождения радиуса нужно найти периметр и площадь треугольника.
Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=9*12/2=54. Чтобы найти периметр треугольника, нужно найти его гипотенузу - по теореме Пифагора она равна √9²+12²=√81+144=√225=15. Тогда периметр равен 9+12+15=36, а полупериметр равен 18.
Таким образом, радиус вписанной окружности равен 54/18=3.
Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=9*12/2=54. Чтобы найти периметр треугольника, нужно найти его гипотенузу - по теореме Пифагора она равна √9²+12²=√81+144=√225=15. Тогда периметр равен 9+12+15=36, а полупериметр равен 18.
Таким образом, радиус вписанной окружности равен 54/18=3.