1)Основи рівнобічної трапеції дорівнюють 10 см і 16 см, а її діагоналі перпендикулярні. Знайдіть висоту трапеції.
Якщо у нас є рівнобічна трапеція та її діагоналі перпендикулярні,тоді користуємося формулою:
h=a+b/2
h=10+16/2=26/2=13
Відповідь: висота трапеції дорівнює 13 см.
2)Діагональ AC трапеції ABCD перпендикулярна до її основ. Довжина більшої основи AD дорівнює 14 см, кут BAD =120° , AB = 6 см. Знайдіть середню лінію трапеції.
Кут BAD=120(за умовою),тоді кут BAC=120-90=30
AB-гіпотенуза=6см(за умовою),тоді BC=3см(катет,який лежить навпроти кута в 30 градусів дорівнює 1/2 гіпотенузи)
Середня лінія дорівнює:
BC=3 см
AD=14 см
1/2(BC+AD)
3+14/2=17/2=8,5
Відповідь: середня лінія трапеції дорівнює 8,5 см.
Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
1)Основи рівнобічної трапеції дорівнюють 10 см і 16 см, а її діагоналі перпендикулярні. Знайдіть висоту трапеції.
Якщо у нас є рівнобічна трапеція та її діагоналі перпендикулярні,тоді користуємося формулою:
h=a+b/2
h=10+16/2=26/2=13
Відповідь: висота трапеції дорівнює 13 см.
2)Діагональ AC трапеції ABCD перпендикулярна до її основ. Довжина більшої основи AD дорівнює 14 см, кут BAD =120° , AB = 6 см. Знайдіть середню лінію трапеції.
Кут BAD=120(за умовою),тоді кут BAC=120-90=30
AB-гіпотенуза=6см(за умовою),тоді BC=3см(катет,який лежить навпроти кута в 30 градусів дорівнює 1/2 гіпотенузи)
Середня лінія дорівнює:
BC=3 см
AD=14 см
1/2(BC+AD)
3+14/2=17/2=8,5
Відповідь: середня лінія трапеції дорівнює 8,5 см.