2) Треугольники, образованные диагоналями на основаниях трапеции, подобны (по накрест лежащим углам при параллельных). Правильные треугольники очевидно подобны. Таким образом синий и красный четырехугольники подобны. Отрезки от вершин до точки пересечения диагоналей являются соответствующими в подобных фигурах и составляют равные углы с соответствующими сторонами. Отрезки отложены от диагонали на равные углы и составляют развернутый угол, то есть прямую.
Треугольник MON равнобедренный, проведем высоту к основанию, в полученном прямоугольном треугольнике катет против угла 60 равен √3/2, следовательно гипотенуза равна 1.
1) По теореме Менелая
BK/KA *AO/ON *NC/CB =1
2/3 *AO/ON *2/5 =1
AO/ON =15/4
2) Треугольники, образованные диагоналями на основаниях трапеции, подобны (по накрест лежащим углам при параллельных). Правильные треугольники очевидно подобны. Таким образом синий и красный четырехугольники подобны. Отрезки от вершин до точки пересечения диагоналей являются соответствующими в подобных фигурах и составляют равные углы с соответствующими сторонами. Отрезки отложены от диагонали на равные углы и составляют развернутый угол, то есть прямую.
Сумма углов треугольника равна 180.
∠A+∠B+∠C=180
В треугольнике AOB
∠A/2 +∠B/2 +∠AOB =180 => 2∠AOB -∠C =180
∠AOB=∠MON (вертикальные углы)
Сумма противоположных углов вписанного четырехугольника равна 180.
В четырехугольнике CMON
∠MON +∠C =180 => ∠MON=120
CO - биссектриса ∠MON, ∪OM=∪ON => OM=ON (хорды, стягивающие равные дуги)
Треугольник MON равнобедренный, проведем высоту к основанию, в полученном прямоугольном треугольнике катет против угла 60 равен √3/2, следовательно гипотенуза равна 1.
OM=ON=1
Или по теореме косинусов
MN^2= 2OM^2(1-cos(MON)) <=> OM=1