Даны три отрезка.
Построй треугольник, две стороны которого равны двум отрезкам, а высота к одной из этих сторон равна третьему отрезку.
В качестве ответа присоедини файл с чертежом построения, описанием шагов построения и анализом возможности выполнения этого построения.
1) уг АСВ = 180 - (10+4) = 180-14 = 166* ( по т о сумме углов в тр)
уг ВСЕ = 10+4 = 14* ( по св-ву внешнего угла тр)
уг ВСД = 14:2 = 7 * ( по опр биссектрисы угла)
2) уг ДВС = 180-10 = 170* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=7* ( из1), уг ДВС= 170* ( из 2) ⇒ уг ВДС = 180-(170+7 ) = 3*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 3*2 = 6 градусов.
Задача 2
1) уг АСВ = 180-(48+19)=113* ( по т о сумме углов в тр)
уг ВСЕ = 48+19 =67 * ( по св-ву внешнего угла тр)
уг ВСД = 67:2 = 33,5 * ( по опр биссектрисы угла)
2) уг ДВС = 180-48 = 132* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=33,5* ( из1), уг ДВС= 132* ( из 2) ⇒ уг ВДС = 180-(132+33,5 ) = 14,5*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 14,5*2 = 29 градусов.
Докажем лемму Архимеда через дополнительное построение. Проведём к окружностям общую касательную АМ, пересекающая прямую ВС в точке М. Пусть ∠BAD = α, ∠CAD = β, ∠ACB = γ, тогда ∠ВАМ = ∠АСВ = γ (по свойству угла между касательной МА и хордой АВ), ∠MAD = γ + α, ∠ADB = ∠CAD + ∠ACD = β + γ (по свойству внешнего угла ΔACD). MA и MD - касательные к малой окружности ⇒ МА = MD - как отрезки касательных, ΔAMD - равнобедренный, ∠MAD = ∠MDA ⇒ γ + α = β + γ ⇒ α = β , AD - биссектриса ∠ВАС, ч.т.д. Конечно, данную лемму можно доказать в 2 строчки, заметив гомотетию окружностей, но это дело вкуса.