2. Судя по всему, автор учебника опечатался, а на самом деле хотел написать XOY и XTY. Раз XTY = 70°, то дуга, на которую он опирается, равна 140°. Но на эту же дугу опирается и XTY, поэтому этот угол равен 1/2 от 140° = 70°. Если же автор не опечатался, то данную задачу решить невозможно, т.к. угол XYO может иметь много значений.
3. Бисектриса острого угла в параллелограмме делит противоположную углу сторону на 2 части, из которых одна часть равна соседней стороне (из-за создания равнобедренного треугольника, основанием которого и является эта бисектриса). Получается, что MD = CD = 8 см. Теперь найдём вторую неизвестную сторону параллелограмма: AM + MD = AD = 8+2 = 10 см.
Соединим вершину, противолежащую большей стороне с центром окружности. Проведем перпендикуляры из центра на меньшие стороны. По свойству касательных к окружности, проведенных из одной точки, отрезки касательных равны. Прямоугольные треугольники равны по двум катетам. Значит, отрезок, соединяющий вершину с треугольника с центром окружности является биссектрисой. По свойству биссектрисы угла треугольника, биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
х:y=51:85=3:5 Значит, центр окружности делит большую сторону в отношении 3:5
2. Судя по всему, автор учебника опечатался, а на самом деле хотел написать XOY и XTY. Раз XTY = 70°, то дуга, на которую он опирается, равна 140°. Но на эту же дугу опирается и XTY, поэтому этот угол равен 1/2 от 140° = 70°. Если же автор не опечатался, то данную задачу решить невозможно, т.к. угол XYO может иметь много значений.
3. Бисектриса острого угла в параллелограмме делит противоположную углу сторону на 2 части, из которых одна часть равна соседней стороне (из-за создания равнобедренного треугольника, основанием которого и является эта бисектриса).
Получается, что MD = CD = 8 см.
Теперь найдём вторую неизвестную сторону параллелограмма:
AM + MD = AD = 8+2 = 10 см.
Теперь найдём периметр: 8+10+8+10 = 36 см.
Проведем перпендикуляры из центра на меньшие стороны.
По свойству касательных к окружности, проведенных из одной точки, отрезки касательных равны.
Прямоугольные треугольники равны по двум катетам.
Значит, отрезок, соединяющий вершину с треугольника с центром окружности является биссектрисой.
По свойству биссектрисы угла треугольника, биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
х:y=51:85=3:5
Значит, центр окружности делит большую сторону в отношении 3:5
3+5= 8 частей
104:8=13 см в одной части
в трех частях 39 см
в пяти частях 65 см
39+65=104 см
ответ. 39 см; 65 см