Даны векторы (a ) ⃗= 5i ⃗ − 12(j ) ⃗, b ⃗ = -4i ⃗ - 3 j ⃗ и с ⃗= xi ⃗ + (j ) ⃗ . [5] a) вычислите косинус угла между векторами a ⃗ и b ⃗ ; b) если векторы с ⃗ и a ⃗ коллинеарны , то чему равно значение x ?
с) если векторы с ⃗ и b ⃗ перпендикулярны , то чему равно значение x ? 6. Две стороны треугольника АВС равны 4 и 2√2 , а площадь равна 4 . [5]
АН=4*2=8 см
2. Рассмотрим треугольник АВН: СО здесь - средняя линия, поскольку соединяет середины сторон. Значит, СОIIАН и СО=1/2АН,
СО=8/2=4 см
3. Треугольники СВО и АВН подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны. В нашем случае:
ВС/ВА=ВО/ВН=1/2, а угол В - общий. Значит, углы подобных треугольников соответственно равны, и
<ВОС=<ВНА=105°
4. Зная, что развернутый угол АНМ равен 180°, находим угол ВНМ:
<ВНМ=180-<ВНА=180-105=75
Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2.
С высотой пирамиды НS они образуют прямоугольные треугольники.
В этих треугольниках SH-общая высота и одинаковый угол бетта по условию.
Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует
что НН1=НН2.
Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок
Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα)
Площадь основания S(осн)=a^2*sinα*cosα/2
Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))