Даны векторы а ⃗, b ⃗, с ⃗ а) Запишите разложение этих векторов по координатным векторам i; j; k; б) Определите координаты вектора n ⃗=2a ⃗+b ⃗-7c ⃗ a ̅{5;-1;2},b ̅{3;2;-4},c ̅{-1;6;0}
1 есть такое соотношение: квадрат высоты прямоугольного треугольника равен произведению отрезков гипотенузы
значит, h² = 16 · 9 = 144, откуда h = 12.
Сделав чертеж, можно заметить, что теперь в меньшем треугольнике гипотенуза - это и есть наш меньший катет. Найдем его по теореме Пифагора: 12² + 9² = 144 + 81 = 225, откуда меньший катет равен 15.
ответ: 15 см.
2 это просто 1 вариант ту задачу не помню
(1))25*25+60*60=4225
Корень из 4225 равен 65 см
ответ: 65см:
3 Нужно нарисовать треугольник. Расстояние от данной точки до прямой - это высота данного треугольника. Эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см).
Наклонные - это гипотенузы полученных прямоугольных треугольников (Обозначим их длины через х и х+5).
А высота исходного треугольника - это общий катет этих двух прямоугольных.
Выразим этот катет из обоих треугольников с теоремы Пифагора:
х² - 81 = (х + 5)² - 256
х² - 81 = х² + 10х + 25 - 256
х² - 81 = х² + 10х - 231
10х = 150
х = 15
Мы нашли одну из наклонных. А теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных):
Основное тригонометрическое тождество:
sin²α + cos²α = 1, откуда
sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол.
Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
tgα = sinα / cosα
1. cosα = 5/13
sinα = √(1 - 25/169) = √(144/169) = 12/13
tgα = 12/13 : 5/13 = 12/5
2. cosα = 15/17
sinα = √(1 - 225/289) = √(64/289) = 8/17
tgα = 8/17 : 15/17 = 8/15
3. cosα = 0,6
sinα = √(1 - 0,36) = √(0,64 ) = 0,8
tgα = 0,8/0,6 = 8/6 = 4/3
Объяснение:
1 есть такое соотношение: квадрат высоты прямоугольного треугольника равен произведению отрезков гипотенузы
значит, h² = 16 · 9 = 144, откуда h = 12.
Сделав чертеж, можно заметить, что теперь в меньшем треугольнике гипотенуза - это и есть наш меньший катет. Найдем его по теореме Пифагора: 12² + 9² = 144 + 81 = 225, откуда меньший катет равен 15.
ответ: 15 см.
2 это просто 1 вариант ту задачу не помню
(1))25*25+60*60=4225
Корень из 4225 равен 65 см
ответ: 65см:
3 Нужно нарисовать треугольник. Расстояние от данной точки до прямой - это высота данного треугольника. Эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см).
Наклонные - это гипотенузы полученных прямоугольных треугольников (Обозначим их длины через х и х+5).
А высота исходного треугольника - это общий катет этих двух прямоугольных.
Выразим этот катет из обоих треугольников с теоремы Пифагора:
х² - 81 = (х + 5)² - 256
х² - 81 = х² + 10х + 25 - 256
х² - 81 = х² + 10х - 231
10х = 150
х = 15
Мы нашли одну из наклонных. А теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных):
225 - 81 = а² (где а - та самая высота)
а² = 144
а = 12
ответ 12