V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
V=384 cm³
S=384 cm²
Объяснение:
1)Найдем объем правильной четырехугольной пирамиды:
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²