Рассмотрим треугольник ASC. Он равнобедренный, и угол SAC = углу SCA = 72° Значит, угол МАС = 36°
Рассмотрим теперь треугольник CAM. Сумма его углов 180°, значит, угол АМС = 72°. Следовательно, треугольник CAM равнобедренный, и поэтому AC=AM. Аналогично находим, что BM=BC.
Таким образом, треугольник AMB равносторонний, и его сторона AB одновременно является стороной основания. По условию составим уравнение AB^2 (корень из 3) / 4 = 5 корень из 3откуда AB = корень из 20.
Параллельные прямые не пересекаются ни в какой геометрии. Просто, например, в евклидовой геометрии, через точку можно провести одну прямую, параллельную данной, в геометрии Лобачевского-Бояи - пучок прямых, параллельных данной, а в геометрии Римана параллельных прямых вообще нет, все прямые пересекаются. Про геометрии с непостоянной кривизной пространства, вроде сферической, распространятся не буду из экономии места. Главное- параллельные прямые не пересекаются, но не во всех геометриях вообще существуют параллельные прямые.
Нужное сечение — треугольник AMB.
Рассмотрим треугольник ASC. Он равнобедренный, и угол SAC = углу SCA = 72° Значит, угол МАС = 36°
Рассмотрим теперь треугольник CAM. Сумма его углов 180°, значит, угол АМС = 72°. Следовательно, треугольник CAM равнобедренный, и поэтому AC=AM. Аналогично находим, что BM=BC.
Таким образом, треугольник AMB равносторонний, и его сторона AB одновременно является стороной основания. По условию составим уравнение AB^2 (корень из 3) / 4 = 5 корень из 3откуда AB = корень из 20.