Задачі на кути трикутника не важкі, якщо мова йде про 8, 9 клас школи. Але коли йде мова про медіани, бісектриси чи певні побудови то знаходження кутів в трикутнику не таке просте, як може здатися з умов. Далі наведені завдання складнішого типу, вони цікавіші, а їх аналіз точно Вас чогось навчить.
Приклад 30.26 Бісектриса гострого кута прямокутного трикутника утворює з протилежною стороною кути, один з яких дорівнює 70 градусів.
Знайти у градусах менший гострий кут трикутника.
Розв'язування: Нехай маємо прямокутний трикутник ABC (∠C=90), AL – бісектриса, яка проведена до сторони BC, тоді ∠ALC=70 градусів (за умовою).
Побудуємо рисунок трикутника та бісектриси в ньому
Линия пересечения сферы плоскостью равна длине окружности, образовавшейся на шаре в результате пересечения. На рисунке АО = МО = ВО = D/2 = 10/2 = 5 см - радиусы шара. Из равнобедренного треугольника ВОМ: углы при основании равны: угол ОВМ = углу ОМВ = 45 градусов. Следовательно, угол ВОМ = 90 градусов. По теореме Пифагора из прямоугольного треугольника ВОМ: ОМ^2 = BM^2 + OM^2, OM^2 = 25 + 25 = 50, OM = корень из 50 = пять корней из двух. Итак, длина окружности равна: 2pi*R = D*pi = пять корней из. Искомая линия пересечения пять корней из двух умножить на pi сантиметров.
Задачі на кути трикутника з розв'язками
Задачі на кути трикутника не важкі, якщо мова йде про 8, 9 клас школи. Але коли йде мова про медіани, бісектриси чи певні побудови то знаходження кутів в трикутнику не таке просте, як може здатися з умов. Далі наведені завдання складнішого типу, вони цікавіші, а їх аналіз точно Вас чогось навчить.
Приклад 30.26 Бісектриса гострого кута прямокутного трикутника утворює з протилежною стороною кути, один з яких дорівнює 70 градусів.
Знайти у градусах менший гострий кут трикутника.
Розв'язування: Нехай маємо прямокутний трикутник ABC (∠C=90), AL – бісектриса, яка проведена до сторони BC, тоді ∠ALC=70 градусів (за умовою).
Побудуємо рисунок трикутника та бісектриси в ньому